Third order convergent time discretization for parabolic optimal control problems with control constraints

نویسندگان

  • Andreas Springer
  • Boris Vexler
چکیده

We consider a discretization and the corresponding error analysis for a linear quadratic parabolic optimal control problem with box constraints on the timedependent control variable. For such problems one can show that a time-discrete solution with second order convergence can be obtained by a first order discontinuous Galerkin time discretization for the state variable and either the variational discretization approach or a post-processing strategy for the control variable. Here, by combining the two approaches for the control variable, we demonstrate that almost third order convergence with respect to the size of the time steps can be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints

In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error e...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect...

متن کامل

Indirect Multiple Shooting for Nonlinear Parabolic Optimal Control Problems with Control Constraints

We discuss the indirect multiple shooting approach for the solution of PDE-based parabolic optimal control problems with control constraints. The method is formulated within an abstract function space setting and uses a space-time Galerkin finite element discretization. The emphasis is on the embedding of indirect multiple shooting into the optimal control framework as well as the detailed desc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2014